Tumbukan lenting sempurna mempunyai nilai koefisien restitusi = 1. Tumbukan tidak lenting sama sekali mempunyai koefisien restitusi = 0 dan tumbukan lenting sebagian sekali nilai e antara 0 hingga 1.
Nomor 1 (UN 2016)
Perhatikan gambar dibawah!

Dua benda A dan B meluncur pada lintasan setengah lingkaran berjari-jari 45 cm. Massa benda A = 2 kali massa benda B. Beberapa saat kemudian, kedua benda bertumbukan tidak lenting sama sekali. Kelajuan benda B setelah tumbukan adalah...
A. 0,5 m/s
B. 1,0 m/s
C. 2 m/s
D. 2,5 m/s
E. 3,0 m/s
Pembahasan
Diketahui
R = h = 45 cm = 0,45 m
mA = 2 mB
e = 0 (tumbukan tidak lenting sama sekali)
Ditanya: vB' = ....
Jawab:
Hitung terlebih dahulu kecepatan kedua benda sesaat sebelum bertumbukan:
vA = vB = √2gh = √2 . 10. 0,45 = √9 = 3 m/s (vA = vB karena ketinggian sama)
Karena tumbukan tidak lenting sama sekali maka vA' = vB', maka dari berdasarkan hukum kekekalan momentum:
mA vA + mB vB = mA vA' + mB vB'
2mB . 3 + mB . 3 = (2mB + mB) vB'
9mB = 3mB vB'
vB' = 9/3 = 3 m/s
Jawaban: E
Nomor 2
Perhatikan gambar!

Dua bola identik dijatuhkan bersamaan pada ketinggian yang sama pada bidang licin berbentuk setengah lingkaran dengan jari-jari 1,8 m. Jika tumbukan antara kedua bola lenting sempurna, kecepatan kedua bola sesaat setelah tumbukan adalah...
A. 0 m/s
B. 3 m/s
C. 6 m/s
D. 9 m/s
E. 11 m/s
Pembahasan
Diketahui:
h = 1,8 m
e = 1 (lenting sempurna)
Ditanya: v' = ...
Jawab:
Hitung terlebih dahulu kecepatan bola sesaat sebelum bertumbukan:
v = √2gh = √2 . 10 . 1,8 = √36 = 6 m/s
Berdasarkan hukum kekekalah momentum:
m1v1 + m2v2 = m1v1' + m2v2' (m1 = m2 sehingga bisa dihilangkan)
v1 + v2 = v1' + v2'
6 + 6 = v1' + v2'
12 = v1' + v2' ..... (pers. 1)
Persamaan koefisien restitusi:
- (v1' - v2') / (v1 - v2) = 1
- (v1' - v2') = v1 - v2
- (v1' - v2') = 6 - 6 = 0
v1' = v2' = v' (Pers. 2)
Subtitusi Pers. 2 ke Pers. 1 diperoleh:
12 = v' + v'
12 = 2v'
v' = 12/2 = 6 m/s
Jawaban: C
Tidak ada komentar:
Posting Komentar